A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NRF2 is a critical regulator and therapeutic target of metal implant particle-incurred bone damage. | LitMetric

NRF2 is a critical regulator and therapeutic target of metal implant particle-incurred bone damage.

Biomaterials

Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China; Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China. Electronic address:

Published: September 2022

Aseptic metal implant loosening due to wear particle-induced bone damage is a major complication of total joint arthroplasty often leading to revision surgery, of which the key regulators mediating the processes are not clearly defined. Here we reported that in a mouse model of calvarial osteolysis, titanium particles (TiPs) and cobalt-chromium-molybdenum particles induced severe osteolysis accompanied by marked suppression of a master redox transcriptional factor NRF2 (Nuclear factor erythroid derived 2-related factor 2). Nfe2l2 knockout mice treated with TiPs developed worse osteolytic alterations compared with wild-type mice. On the contrary, NRF2 restoration by an NRF2 agonist TBHQ (tert-butylhydroquinone) effectively alleviated the osteolysis and the abnormal expression of NRF2 downstream antioxidant enzymes, inflammatory cytokines and osteogenic factors. Further, TiPs induced adverse osteoblastogenesis and osteoclastogenesis in cultured bone cells, which were substantially blocked by TBHQ in an NRF2 inhibition-sensitive manner. Consistently, the osteoprotective effects of TBHQ observed in wild-type mice were largely limited in Nfe2l2 knockout mice. Collectively, our data suggest that NRF2 suppression is a critical causal event of metal wear particle-incurred osteolysis, and the strategies reinstating NRF2 are effective to lessen the bone damage and potentially reduce the incidence of metal implant loosening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121742DOI Listing

Publication Analysis

Top Keywords

metal implant
12
bone damage
12
nrf2
8
implant loosening
8
nfe2l2 knockout
8
knockout mice
8
wild-type mice
8
nrf2 critical
4
critical regulator
4
regulator therapeutic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!