Biodegradable ring-shaped implantable device for intravesical therapy of bladder disorders.

Biomaterials

The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. Electronic address:

Published: September 2022

AI Article Synopsis

  • Intravesical instillation is a method used to deliver drugs directly into the bladder for treating urological issues, but it has challenges like pain and frequent clinic visits.
  • Researchers have developed a new biodegradable intravesical device made of PCL microcapsules and PDS sutures, which is easy to insert and remains in the bladder for up to four weeks.
  • The device allows for long-term drug release of medications like lidocaine and resiquimod, and a cost-effectiveness analysis shows it's a better option compared to traditional treatment methods.

Article Abstract

Intravesical instillation is an efficient drug delivery route for the local treatment of various urological conditions. Nevertheless, intravesical instillation is associated with several challenges, including pain, urological infection, and frequent clinic visits for catheterization; these difficulties support the need for a simple and easy intravesical drug delivery platform. Here, we propose a novel biodegradable intravesical device capable of long-term, local drug delivery without a retrieval procedure. The intravesical device is composed of drug encapsulating biodegradable polycaprolactone (PCL) microcapsules and connected by a bioabsorbable Polydioxanone (PDS) suture with NdFeB magnets in the end. The device is easily inserted into the bladder and forms a 'ring' shape optimized for maximal mechanical stability as informed by finite element analysis. In this study, inserted devices were retained in a swine model for 4 weeks. Using this device, we evaluated the system's capacity for delivery of lidocaine and resiquimod and demonstrated prolonged drug release. Moreover, a cost-effectiveness analysis supports device implementation compared to the standard of care. Our data support that this device can be a versatile drug delivery platform for urologic medications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485746PMC
http://dx.doi.org/10.1016/j.biomaterials.2022.121703DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
intravesical instillation
8
delivery platform
8
intravesical device
8
device
7
intravesical
6
drug
6
delivery
5
biodegradable ring-shaped
4
ring-shaped implantable
4

Similar Publications

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Mitochondrial Electron Flow Dynamics Imaging for Assessing Mitochondrial Quality and Drug Screening.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.

Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!