Pyrroloquinoline quinone (PQQ) improves pulmonary hypertension by regulating mitochondrial and metabolic functions.

Pulm Pharmacol Ther

Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. Electronic address:

Published: October 2022

Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs), inflammation, as well as mitochondrial and metabolic dysregulation, contributes to the development of pulmonary hypertension (PH). Pyrroloquinoline quinone (PQQ), a potent natural antioxidant with anti-diabetic, neuroprotective, and cardioprotective properties, is known to promote mitochondrial biogenesis. However, its effect on cellular proliferation, apoptosis resistance, mitochondrial and metabolic alterations associated with PH remains unexplored. The current study was designed to investigate the effect of PQQ in the treatment of PH. Human pulmonary artery smooth muscle cells (HPASMCs), endothelial cells (PAECs), and primary cultured cardiomyocytes were subjected to hypoxia to induce PH-like phenotype. Furthermore, Sprague Dawley (SD) rats injected with monocrotaline (MCT) (60 mg/kg, SC, once) progressively developed pulmonary hypertension. PQQ treatment (2 mg/kg, PO, for 35 days) attenuated cellular proliferation and promoted apoptosis via a mitochondrial-dependent pathway. Furthermore, PQQ treatment in HPASMCs prevented mitochondrial and metabolic dysfunctions, improved mitochondrial bioenergetics while preserving respiratory complexes, and reduced insulin resistance. In addition, PQQ treatment (preventive and curative) significantly attenuated the increase in right ventricle pressure and hypertrophy as well as reduced endothelial dysfunction and pulmonary artery remodeling in MCT-treated rats. PQQ also prevented cardiac fibrosis and improved cardiac functions as well as reduced inflammation in MCT-treated rats. Altogether, the above findings demonstrate that PQQ can attenuate mitochondrial as well as metabolic abnormalities in PASMCs and also prevent the development of PH in MCT treated rats; hence PQQ may act as a potential therapeutic agent for the treatment of PH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2022.102156DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolic
16
pqq treatment
16
pulmonary hypertension
12
pulmonary artery
12
pqq
9
pyrroloquinoline quinone
8
quinone pqq
8
artery smooth
8
smooth muscle
8
muscle cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!