Bacterial infections significantly slow the wound healing process, thus severely threatening human health. Furthermore, traditional antibiotics may promote the development of multidrug-resistant bacteria. Therefore, developing novel bactericides and therapeutic strategies for bacterial infections is important to enhance wound healing. Herein, a three-in-one bactericidal flower-like nanocomposite was assembled using Ag nanoparticles/phosphotungstic acid-polydopamine nano-flowers (AgNPs/POM-PDA). The nanocomposite exhibited photothermal therapy (PTT) when exposed to NIR light via photothermal conversion by PDA. The resultant photothermal effect accelerated and controlled the Ag released from AgNPs. The chemodynamic therapy (CDT) was obtained via POM catalytic Fenton-like reaction. The combined PTT/CDT/Ag treatment achieved excellent synergistic anti-bacterial activity against both gram-negative E. coli and gram-positive S. aureus. A multifunctional wound dressing was then obtained by embedding the AgNPs/POM-PDA flower-like nanocomposite into the chitosan (CS)/gelatin (GE) biocomposite hydrogel. The synergy of AgNPs/POM-PDA nanocomposites and CS/GE hydrogel remarkably accelerated wound healing in vivo due to the excellent biocompatibility, hydroabsorptivity, and breathability of the hydrogel. In this study, a multifunctional agent was developed to synergistically combat bacterial infections and accelerate wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.08.151 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!