The correlation between in vivo and in vitro data is yet not sufficiently optimized to allow a significant reduction and replacement of animal testing in pharmaceutical development. One of the main reasons for this lies in the poor mechanistic understanding and interpretation of the physical mechanisms enabling formulation rely on for deploying the drug. One mechanism that still lacks a proper interpretation is the kinetics of drug release from nanocarriers. In this work, we investigate two different types of classical enabling formulations - i) cyclodextrin solutions and ii) liposomal dispersions - by a combination of an experimental method (i.e. UV-Vis localized spectroscopy) and mathematical modelling/numerical data fitting. With this approach, we are able to discriminate precisely between the amount of drug bound to nanocarriers or freely dissolved at any time point; in addition, we can precisely estimate the binding and diffusivity constants of all chemical species (free drug/bound drug). The results obtained should serve as the first milestone for the further development of reliable in vitro/in silico models for the prediction of in vivo drug bioavailability when enabling formulations are used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2022.08.009 | DOI Listing |
Echocardiography
January 2025
Radiology Department, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK.
Optimal management of adult congenital heart disease (ACHD) requires a multidisciplinary team (MDT) approach, fostering a collaborative culture over an individualistic approach. Within this framework, subspecialty-trained radiologists provide crucial imaging expertise, supporting cardiologists, surgeons, and interventional cardiologists in diagnoses, treatment planning, and follow-up evaluations. Advanced imaging tools and a nuanced understanding of surgical and interventional procedures enable radiologists to provide valuable insights to clinicians.
View Article and Find Full Text PDFCNS Drugs
January 2025
Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy.
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA.
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
In this study, we present a novel approach using amperometric microsensors to detect quercetin in cosmetic formulations and track its metabolic behavior after topical application. This method offers a sensitive, real-time alternative to conventional techniques, enabling the detection of quercetin's bioavailability, its transformation into active metabolites, and its potential therapeutic effects when applied to the skin. Quercetin (Q) is a bioactive flavonoid known for its potent antioxidant properties, naturally present in numerous plants, particularly those with applications in cosmetic formulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!