Human coastal occupation often leads to the degradation of the structural properties and environmental functions of natural coastlines. . Much research has been done on the cost-effectiveness of various living shorelines designs, however more work is needed for simple, small-scale designs that are typically adopted in waterfront residential or recreational properties. To contribute to this gap, we planted small-scale plots of black needlerush (Juncus roemerianus) in two sites, one in a residential property and another one in a recreational property in the Northern Gulf of Mexico that experienced significant wave energy. Plots were planted at two different densities (50% or 100% initial cover) or left unplanted (controls) and, along with monitoring the evolution of the planted salt marsh, we measured a number of functional metrics including soil slope, abundance of nekton within and in front of the plots, and cover of submerged aquatic vegetation (SAV) in front of the plots monthly over two years. In one of the sites plant cover decreased precipitously, and in the other site we did not observe any significant changes in plant cover over time (i.e. the initial 50% and 100% plantings remained at that level throughout the experiment) despite protecting the planted salt marsh with coir logs. We did not find any changes in soil slope or nekton abundance between planted and control plots. SAV growth was restrained in front of planted plots in relation to control plots, possibly due to deleterious impacts by the coir logs. Overall, the results suggest the protection against wave energy attained in this experiment is insufficient for adequate saltmarsh establishment and growth, thereby encountering decreasing or stationary plant density and no significant differences in soil slope or nekton abundance between planted and non-planted plots. Our results indicate the adoption of small-scale saltmarsh planting to reduce erosion and enhance coastal functionality needs to ensure that wave energy is sufficiently dampened for adequate saltmarsh growth and, concomitantly, the conceived saltmarsh protection mechanism does not negatively impact adjacent SAV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116025 | DOI Listing |
Commun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFTalanta
January 2025
College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:
The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Materials Research and Engineering, Sensor and Flexible Electronics, 2 Fusionopolis Way, 138634, SINGAPORE.
Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.
View Article and Find Full Text PDFSmall
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!