A primer on heme biosynthesis.

Biol Chem

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA.

Published: November 2022

Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2022-0205DOI Listing

Publication Analysis

Top Keywords

heme biosynthesis
12
three pathways
12
heme
8
pathways synthesize
8
primer heme
4
biosynthesis heme
4
heme protoheme
4
protoheme essential
4
essential cofactor
4
cofactor large
4

Similar Publications

Boosting porphyrin synthesis and ALA-mediated photoinactivation through near-infrared therapy.

Photochem Photobiol

January 2025

Laboratorio de Terapias Fotoasistidas, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín and CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.

Photodynamic inactivation (PDI) combines the use of photosensitizers with visible light to produce reactive oxygen species that effectively eliminate pathogens. To investigate the impact of near- infrared therapy (NIRT) on heme biosynthesis and permeability of the pro-photosensitizers 5-aminolevulinic acid (ALA) and Hexyl-ALA (H-ALA) through biofilms, we applied sub-lethal conditions for both NIRT and PDI to maintain intact bacterial viability. During NIRT, the temperature remained below 37°C, permitting rapid heating (ΔT = 11°C) without causing thermal damage.

View Article and Find Full Text PDF

Preeclampsia affects 2% to 8% of pregnancies worldwide and results in significantly high maternal and perinatal morbidity and mortality, with delivery being the only definitive treatment. It is not a single disorder, but rather a manifestation of an insult(s) to the uteroplacental unit -whether maternal, fetal, and/or placental. Multiple etiologies have been implicated, including uteroplacental ischemia, maternal infection and/or inflammation, maternal obesity, sleep disorders, hydatidiform mole, maternal intestinal dysbiosis, autoimmune disorders, fetal diseases, breakdown of maternal-fetal immune tolerance, placental aging, and endocrine disorders.

View Article and Find Full Text PDF

Insights into the diverse roles of the terminal oxidases in Burkholderia cenocepacia H111.

Sci Rep

January 2025

Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.

Burkholderia cenocepacia H111 is an obligate aerobic bacterium which has been isolated from a cystic fibrosis (CF) patient. In CF lungs the environment is considered micro-oxic or even oxygen-depleted due to bacterial activities and limited oxygen diffusion in the mucus layer. To adapt to low oxygen concentrations, bacteria possess multiple terminal oxidases.

View Article and Find Full Text PDF

As a novel form of nonapoptotic cell death, ferroptosis is developing into a promising therapeutic target of dedifferentiating and therapy-refractory cancers. However, its application in pancreatic cancer is still unknown. In the preliminary research, we found that F-box and WD repeat domain-containing 7 (FBW7) inhibited the migration and proliferation of pancreatic cancer cells through its substrate c-Myc.

View Article and Find Full Text PDF

The protective effect and potential mechanism of Zanthoxylum bungeanum Maxim. on atherosclerosis.

Fitoterapia

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China. Electronic address:

The pericarp of Zanthoxylum bungeanum Maxim. (ZBM) is an edible spice with medicinal value, and it has anti-obesity, anti-inflammatory, and cardiovascular protective effects. This study investigated the therapeutic effect of ZBM on atherosclerosis (AS) and its potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!