Introduction: Breeding studies are commonly conducted to develop new cultivars with high yield levels and improved quality traits. Chemically-induced mutations are used to create genetic variations in wheat genomes. Various physical and chemical mutagens are used to increase frequency of mutations and facilitate the selection processes. Sodium azide (SA) is largely employed to induce mutations of the genes regulating essential traits. Such mutations may also elucidate gene functions of the mutant phenotypes. Present experiments were conducted to investigate potential use of conventional chemical mutagenesis technique through SA for mature embryo culture in wheat.

Methods And Results: Sodium azide mutagenesis was experimented with 4 treatment durations (1, 2, 3 and 4 h) and 5 treatment concentrations (0, 1, 2, 3 and 4 mM). Mature embryos were subjected to experimental treatments to detect optimum doses of mutagenesis and to estimate polymorphism and genomic instability. Primarily, 50% reduction in number of regenerated plants as compared to the control (LD) was adopted as the optimum dose. Based on LD criterion, the optimum value was achieved at 1 h duration of 4 mM SA concentration. Afterwards, inter-primer binding site markers were applied to investigate polymorphism and genomic instability in the regenerated plants.

Conclusions: Present findings revealed that efficiency of chemical mutagenesis could be improved through the use of molecular technology and such mutations may assist plant breeders in developing high-yield cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07896-yDOI Listing

Publication Analysis

Top Keywords

sodium azide
12
polymorphism genomic
12
genomic instability
12
chemical mutagenesis
8
mutagenesis
5
mutations
5
mutagenic effects
4
effects sodium
4
azide vitro
4
vitro mutagenesis
4

Similar Publications

Background: Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure.

Results: In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity.

View Article and Find Full Text PDF

Manganese-Catalyzed Electrochemical Amination of Activated Alkenes.

Chem Asian J

January 2025

Visva-Bharati University: Visva-Bharati, Chemistry, Santiniketan Road, 731235, Santiniketan, Bolpur, INDIA.

We have unveiled a new manganese-catalyzed electrochemical amination method to transform activated alkenes into a diverse array of vinyl amines harnessing sodium azide as the aminating reagent. The strategy claims notable versatility by accommodating a broad spectrum of substrates, demonstrating good compatibility with diverse functional groups, as well as delivering a moderate to good range of yields. The successful late-stage functionalization further underscores its practical utility.

View Article and Find Full Text PDF

The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules.

View Article and Find Full Text PDF

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Photoinduced Azidoamination of Styrenes Using Sodium Azide and (Diphenylmethylene)amino Benziodoxolone.

Chem Asian J

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.

Herein, we report the radical azidoamination of styrenes via the use of a combination of sodium azide and (diphenylmethylene)amino benziodoxolone under visible-light irradiation. This approach to unsymmetrical diamination provides a simple and practical method for constructing vicinal diamine scaffolds with two distinct and easily modifiable amino functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!