Alterations in brain reactions to alcohol-related cues are a neurobiological characteristic of alcohol dependence (AD) and a prospective target for achieving substantial treatment effects. However, a robust prediction of the differences in inpatients' brain responses to alcohol cues during the treatment process is still required. This study offers a data-driven approach for classifying AD inpatients undertaking alcohol treatment protocols based on their brain responses to alcohol imagery with and without drinking actions. The brain activity of thirty inpatients with AD undergoing treatment was scanned using functional magnetic resonance imaging (fMRI) while seeing alcohol and matched non-alcohol images. The mean values of brain regions of interest (ROI) for alcohol-related brain responses were obtained using general linear modeling (GLM) and subjected to hierarchical clustering analysis. The proposed classification technique identified two distinct subgroups of inpatients. For the two types of cues, subgroup one exhibited significant activation in a wide range of brain regions, while subgroup two showed mainly decreased activation. The proposed technique may aid in detecting the vulnerability of the classified inpatient subgroups, which can suggest allocating the inpatients in the classified subgroups to more effective therapies and developing prognostic future relapse markers in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-022-06447-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!