Rosmarinic and chlorogenic acid, isolated from ferns, suppress stem cell damage induced by hydrogen peroxide.

J Pharm Pharmacol

Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil.

Published: November 2022

Objectives: Evaluating the effects of rosmarinic (RA) and cryptochlorogenic (CGA) acids isolated from Blechnum binervatum extract on stem cell viability, toxicity and the protective effect on oxidative cell damage.

Methods: MTT and LDH methods were employed, using stem cells from teeth. RA and CGA were evaluated at 100, 250 and 500 µM. The negative effect of hydrogen peroxide (H2O2) (200-2200 µM) and the capacity of RA and CGA (10-100 µM) as protective agents were also evaluated. DAPI followed by fluorescent microscopy was employed to photograph the treated and untreated cells.

Key Findings: At all tested concentrations, RA and CGA demonstrated the ability to maintain cell viability, and with no cytotoxic effects on the treated stem cells. RA also induced an increase of the cell viability and a reduction in cytotoxicity. H2O2 (1400 µM) induced >50% of cytotoxicity, and both compounds were capable of suppressing H2O2 damage, even at the lowest concentration. At 100 µM, in H2O2 presence, total cell viability was observed through microscope imaging.

Conclusions: These findings contribute to the continued research into natural substances with the potential for protecting cells against oxidative injury, with the consideration that RA and CGA are useful in the regeneration of damaged stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgac061DOI Listing

Publication Analysis

Top Keywords

cell viability
16
stem cells
12
stem cell
8
hydrogen peroxide
8
cell
6
stem
5
cga
5
µm
5
rosmarinic chlorogenic
4
chlorogenic acid
4

Similar Publications

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Background: Data in clear cell renal cell carcinoma (ccRCC) xenografts defined the seleno-L-methionine (SLM) dose and the plasma selenium concentrations associated with the enhancement of HIF1α/2α degradation, stabilization of tumor vasculature, enhanced drug delivery, and efficacy of axitinib. The data provided the rationale for the development of this phase I clinical trial of SLM and axitinib in advanced or metastatic relapsed ccRCC.

Patients And Methods: Patients were ≥18 years with histologically and radiologically confirmed advanced or metastatic ccRCC who had received at least one prior systemic therapy, which could include axitinib (last dose ≥6 months prior to enrollment).

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!