Age-related macular degeneration (AMD) and Stargardt disease are the leading causes of blindness for the elderly and young adults respectively. Geographic atrophy (GA) of AMD and Stargardt atrophy are their end-stage outcomes. Efficient methods for segmentation and quantification of these atrophic lesions are critical for clinical research. In this study, we developed a deep convolutional neural network (CNN) with a trainable self-attended mechanism for accurate GA and Stargardt atrophy segmentation. Compared with traditional post-hoc attention mechanisms which can only visualize CNN features, our self-attended mechanism is embedded in a fully convolutional network and directly involved in training the CNN to actively attend key features for enhanced algorithm performance. We applied the self-attended CNN on the segmentation of AMD and Stargardt atrophic lesions on fundus autofluorescence (FAF) images. Compared with a preexisting regular fully convolutional network (the U-Net), our self-attended CNN achieved 10.6% higher Dice coefficient and 17% higher IoU (intersection over union) for AMD GA segmentation, and a 22% higher Dice coefficient and a 32% higher IoU for Stargardt atrophy segmentation. With longitudinal image data having over a longer time, the developed self-attended mechanism can also be applied on the visual discovery of early AMD and Stargardt features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418226 | PMC |
http://dx.doi.org/10.1038/s41598-022-18785-6 | DOI Listing |
Klin Monbl Augenheilkd
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
A diagnosis of age-related macular degeneration (AMD) may have a significant impact on a patient's life. Therefore, it is important to consider differential diagnoses, as these can differ considerably from AMD regarding prognosis, inheritance, monitoring and therapy. Differential diagnoses include other macular diseases with drusen, drusen-like changes, monogenic retinal dystrophies, as well as a wide range of other, often rare macular diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.
View Article and Find Full Text PDFCureus
December 2024
Ophthalmology, Ramsay Health Care, Mount Stuart Hospital, Torquay, GBR.
Macular degeneration (MD) is a pathological condition affecting the macula, an area located near the center of the retina. This disease affects individuals of all ages, both children and adults, causing severe visual impairment. Age-related macular degeneration (AMD) is the leading cause of visual loss in the older population while Stargardt disease (SD) is the most common hereditary maculopathy with an autosomal dominant pattern of inheritance.
View Article and Find Full Text PDFStem Cells Transl Med
December 2024
NEI/OSCTRS/OGVFB, Bethesda, MD, United States.
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.
View Article and Find Full Text PDFFree Radic Biol Med
February 2025
Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China. Electronic address:
The disruption of the visual cycle leads to the accumulation of all-trans-retinal (atRAL) in the retina, a hallmark of autosomal recessive Stargardt disease (STGD1) and dry age-related macular degeneration (AMD), both of which cause retinal degeneration. Although our previous studies have shown that atRAL induces ferroptosis and activates c-Jun N-terminal kinase (JNK) signaling in the retina, the relationship between JNK signaling and ferroptosis in atRAL-mediated photoreceptor damage remains unclear. Here, we reported that JNK activation by atRAL drove photoreceptor ferroptosis through ferritinophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!