Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113314 | PMC |
http://dx.doi.org/10.1007/s00441-022-03676-z | DOI Listing |
Front Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFiScience
December 2024
Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT USA.
The mammalian prion protein can form infectious, non-native, and protease resistant aggregates (PrP), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrP seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrP, into more PrP. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.
View Article and Find Full Text PDFVaccine
December 2024
USDA-ARS, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, USA. Electronic address:
Influenza A viruses (IAV) of subtypes H1N1, H1N2, and H3N2 are endemic in US domestic swine populations and contribute to significant economic losses annually and pose a persistent pandemic threat. Adjuvanted, whole-inactivated virus (WIV) vaccines are the primary countermeasure to control IAV in swine. The compositions of these vaccines are matched for hemagglutinin (HA) strain and content, often ignoring the other IAV glycoprotein, the neuraminidase (NA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!