Ribosomally synthesized and post-translationally modified peptides (RiPPs) are structurally complex natural products with diverse bioactivities. Here we report discovery of a RiPP, kintamdin, for which the structure is determined through spectroscopy, spectrometry and genomic analysis to feature a bis-thioether macrocyclic ring and a β-enamino acid residue. Biosynthetic investigation demonstrated that its pathway relies on four dedicated proteins: phosphotransferase KinD, Lyase KinC, kinase homolog KinH and flavoprotein KinI, which share low homologues to enzymes known in other RiPP biosynthesis. During the posttranslational modifications, KinCD is responsible for the formation of the characteristic dehydroamino acid residues including the β-enamino acid residue, followed by oxidative decarboxylation on the C-terminal Cys and subsequent cyclization to provide the bis-thioether ring moiety mediated by coordinated action of KinH and KinI. Finally, conserved genomic investigation allows further identification of two kintamdin-like peptides among the kin-like BGCs, suggesting the occurrence of RiPPs from actinobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415263PMC
http://dx.doi.org/10.1038/s41467-022-32774-3DOI Listing

Publication Analysis

Top Keywords

β-enamino acid
12
post-translationally modified
8
acid residue
8
ribosomally synthesised
4
synthesised post-translationally
4
modified peptide
4
peptide β-enamino
4
acid
4
acid macrocyclic
4
macrocyclic motif
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!