Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism.

Nat Commun

Department of Anesthesiology, Weill Cornell Medicine, New York City, NY, USA.

Published: August 2022

Perforin-2 (PFN2, MPEG1) is a pore-forming protein that acts as a first line of defense in the mammalian immune system, rapidly killing engulfed microbes within the phagolysosome in macrophages. PFN2 self-assembles into hexadecameric pre-pore rings that transition upon acidification into pores damaging target cell membranes. Here, using high-speed atomic force microscopy (HS-AFM) imaging and line-scanning and molecular dynamics simulation, we elucidate PFN2 pre-pore to pore transition pathways and dynamics. Upon acidification, the pre-pore rings (pre-pore-I) display frequent, 1.8 s, ring-opening dynamics that eventually, 0.2 s, initiate transition into an intermediate, short-lived, ~75 ms, pre-pore-II state, inducing a clockwise pre-pore-I to pre-pore-II propagation. Concomitantly, the first pre-pore-II subunit, undergoes a major conformational change to the pore state that propagates also clockwise at a rate ~15 s. Thus, the pre-pore to pore transition is a clockwise hand-over-hand mechanism that is accomplished within ~1.3 s. Our findings suggest a clockwise mechanism of membrane insertion that with variations may be general for the MACPF/CDC superfamily.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418332PMC
http://dx.doi.org/10.1038/s41467-022-32757-4DOI Listing

Publication Analysis

Top Keywords

pre-pore pore
12
pore transition
12
clockwise hand-over-hand
8
pre-pore rings
8
pre-pore
5
transition
5
perforin-2 clockwise
4
hand-over-hand pre-pore
4
pore
4
transition mechanism
4

Similar Publications

Channel Formation in Cry Toxins: An Alphafold-2 Perspective.

Int J Mol Sci

November 2023

Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

(Bt) strains produce pore-forming toxins (PFTs) that attack insect pests. Information for pre-pore and pore structures of some of these Bt toxins is available. However, for the three-domain (I-III) crystal (Cry) toxins, the most used Bt toxins in pest control, this crucial information is still missing.

View Article and Find Full Text PDF

Gasdermins (GSDMs) serve as pivotal executors of pyroptosis and play crucial roles in host defence, cytokine secretion, innate immunity, and cancer. However, excessive or inappropriate GSDMs activation is invariably accompanied by exaggerated inflammation and results in tissue damage. In contrast, deficient or impaired activation of GSDMs often fails to promptly eliminate pathogens, leading to the increasing severity of infections.

View Article and Find Full Text PDF

The Toxin Complex (Tc) superfamily consists of toxin translocases that contribute to the targeting, delivery, and cytotoxicity of certain pathogenic Gram-negative bacteria. Membrane receptor targeting is driven by the A-subunit (TcA), which comprises IgG-like receptor binding domains (RBDs) at the surface. To better understand XptA2, an insect specific TcA secreted by the symbiont from the intestine of entomopathogenic nematodes, we determined structures by X-ray crystallography and cryo-EM.

View Article and Find Full Text PDF

Structural journey of an insecticidal protein against western corn rootworm.

Nat Commun

July 2023

Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.

The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action.

View Article and Find Full Text PDF

Enterotoxaemia (ET) is a severe disease that affects domestic ruminants, including sheep and goats, and is caused by type B and D strains. The disease is characterized by the production of Epsilon toxin (ETX), which has a significant impact on the farming industry due to its high lethality. The binding of ETX to the host cell receptor is crucial, but still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!