A specific group of transmembrane receptors, including the β1-adrenergic receptor (β1-AR), is internalized through a non-clathrin pathway known as Fast Endophilin Mediated Endocytosis (FEME). A key question is: how does the endocytic machinery assemble and how is it modulated by activated receptors during FEME. Here we show that endophilin, a major regulator of FEME, undergoes a phase transition into liquid-like condensates, which facilitates the formation of multi-protein assemblies by enabling the phase partitioning of endophilin binding proteins. The phase transition can be triggered by specific multivalent binding partners of endophilin in the FEME pathway such as the third intracellular loop (TIL) of the β1-AR, and the C-terminal domain of lamellipodin (LPD). Other endocytic accessory proteins can either partition into, or target interfacial regions of, these condensate droplets, and LPD also phase separates with the actin polymerase VASP. On the membrane, TIL promotes protein clustering in the presence of endophilin and LPD C-terminal domain. Our results demonstrate how the multivalent interactions between endophilin, LPD, and TIL regulate protein assembly formation on the membrane, providing mechanistic insights into the priming and initiation steps of FEME.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418313 | PMC |
http://dx.doi.org/10.1038/s41467-022-32529-0 | DOI Listing |
Bioact Mater
April 2025
Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India.
This study delves into the interplay of temperature, composition, tortuosity, and electrostatic interactions on ion diffusion within cation exchange membranes. It explores the temperature dependence (16-60 °C) of the self-diffusion coefficients (SDCs) of Ba and Eu ions within the Nafion 117 cation exchange membrane, particularly in the presence of Na ions. Radiotracer techniques and electrochemical impedance spectroscopy were employed to investigate these SDCs.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America.
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Since the first Chapter dealt with the well-known charge-charge interactions familiar to biologists, this concluding Chapter introduces some key electrical forces, probably much less familiar, perhaps even unknown. LLPS (liquid liquid phase separation) which we have seen involved in so much of cell biology depends on multivalent, π-π and cation-π electrical forces. How these arise is dealt with here and may be especially useful as an aide memoir to return to when such issues arise within the bulk of the text.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!