Biohybrid Response Microparticles Decorated with Trained-MSCs for Acute Liver Failure Recovery.

Adv Healthc Mater

Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.

Published: November 2022

Microcarrier-based mesenchymal stem cells (MSCs) delivery have attracted increasing attention in acute liver failure (ALF) therapy, while there is still room for improvement in terms of improving cell loading efficiency, enhancing anti-inflammatory features, and controlling cell release. Here, novel lipopolysaccharide (LPS)-composited magnetic-thermal responsive inverse opal particles (MIOPs) are presented for the delivery of MSCs. The MIOPs are composed of a chitosan inverse opal skeleton filled with a hydrogel containing LPS, poly(N-isopropylacrylamide), and Fe O nanoparticles. Benefitting from the biocompatible chitosan component and the huge specific surface area, the resultant MIOPs can capture MSCs in a nondestructive way. Furthermore, LPS can be released from the MIOPs under the stimulation of an alternating magnetic field, by which the MSCs are activated to gain the feature of "trained immunity." Moreover, this process can be monitored in real-time by the structural color change of the MIOPs. With that, the MSCs-laden MIOPs are employed in rats with ALF, and they exhibit obvious anti-inflammatory and therapeutic efficacy superior to untrained MSCs. These performances make the MIOPs a distinctive cell delivery platform for clinical tissue recovery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202201085DOI Listing

Publication Analysis

Top Keywords

acute liver
8
liver failure
8
inverse opal
8
miops
7
mscs
5
biohybrid response
4
response microparticles
4
microparticles decorated
4
decorated trained-mscs
4
trained-mscs acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!