A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of Acoustic Measures for the Discrimination Among Healthy, Rough, Breathy, and Strained Voices Using the Feedforward Neural Network. | LitMetric

Performance of Acoustic Measures for the Discrimination Among Healthy, Rough, Breathy, and Strained Voices Using the Feedforward Neural Network.

J Voice

Department of Speech-Language and Hearing Sciences, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil. Electronic address:

Published: August 2022

Objective: To identify and evaluate the best set of acoustic measures to discriminate among healthy, rough, breathy, and strained voices.

Methods: This study used the vocal samples of the sustained /ε/ vowel from 251 patients with the vocal complaints, among which 51, 80, 63, and 57 patients exhibited healthy, rough, breathy, and strained voices, respectively. Twenty-two acoustic measures were extracted, and feature selection was applied to reduce the number of combinations of acoustic measures and obtain an optimal subset of measures according to the information gain attribute ranking algorithm. To classify signals as a function of predominant voice quality, a feedforward neural network was applied using a Levenberg-Marquardt supervised learning algorithm.

Results: The best results were obtained from 11 combinations, with each combination presenting six acoustic measures. Kappa indices ranged from 0.7527 to 0.7743, the overall hit rates are 81.67%-83.27%, and the hit rates of healthy, rough, breathy, and strained voices are 74.51%-84.31%, 78.75%-90.00%, 85.71%-98.41%, and 68.42%-82.46%, respectively.

Conclusions: We obtained the best results from 11 combinations, with each combination exhibiting six acoustic measures for discriminating among healthy, rough, breathy, and strained voices. These sets exhibited good Kappa performance and a good overall hit rate. The hit rate varied between acceptable and good for healthy voices, acceptable and excellent for rough voices, good and excellent for breathy voices, and poor and good for strained voices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvoice.2022.07.002DOI Listing

Publication Analysis

Top Keywords

acoustic measures
24
healthy rough
20
rough breathy
20
breathy strained
20
strained voices
20
voices
8
feedforward neural
8
neural network
8
best combinations
8
combinations combination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!