Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a novel environment-friendly stability indicating capillary zone electrophoresis (CZE) method has been developed and validated for assaying the aripiprazole (ARP) in tablet dosage form. The separation of ARP from its degradation products and internal standard was achieved using a fused silica capillary column (30.2 cm x 75 μm ID), a background electrolyte containing 6 mmol L ammonium formate buffer (pH 3) with 5% methanol under a potential of 15 kV and detection at 214 nm. The stability indicating ability of the method was investigated by analyzing ARP after being subjected to acidic, alkaline, thermal, photolytic, and oxidative stress conditions, according to ICH guidelines. Design of experiments was used during forced degradation and method optimization. Oxidation was the main degradation pathway among those evaluated. The drug was separated from its oxidative degradation products in less than 4 min. CZE method was linear between 60 - 140 μg mL, R = 0.9980, precise (intra-day 0.88% and inter-day 1.30%). The average recovery was 100.93 ± 0.77%. This is the first method in the literature for quantification of ARP in the presence of its related degradation products with high separation efficiency, low operation cost and minimum solvent consumption. This method could be helpful in the routine quality control analysis in the pharmaceutical industries with least harmful effect on the environment. CZE is considered an eco-friendly alternative of conventionally HPLC methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2022.08.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!