Resilience of hollow fibre membrane bioreactors for treating HS under steady state and transient conditions.

Chemosphere

National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland.

Published: November 2022

HS removal performance by hollow fibre membrane bioreactors (HFMBs) was investigated for 271 days at ambient (20 ± 2 °C) temperature employing an inlet HS concentrations up to 3600 ppm and empty bed residence time (EBRT) of 187, 92 and 62 s. Different operating conditions including pH control (with or without), famine period, shock loads (4-72 h) and different biomass types (presence or absence of suspended biomass) were investigated. The HS flux and mass-transfer coefficient were significantly higher for the biotic HFMBs (R and R) compared to the abiotic control (R) at all employed EBRTs. Significant differences in HS removal efficiency (RE) and elimination capacity (EC) were noted for different inlet HS concentrations, EBRTs, pH and biomass type. The HFMB achieved >99% RE at steady-state for biotic operation with an EC of 33.8, 30.0 and 30.9 g m h at an EBRT of 187, 92 and 62 s, respectively. Sulfate (92-93%) was the main sulfur species in the HS bioconversion process. The HFMB showed a good resilience to shock loads and showed quick recovery (<24 h) after withdrawal of the shock loads. The HFMB had a critical loading rate of HS about 135 g m h under transient-state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136142DOI Listing

Publication Analysis

Top Keywords

hollow fibre
8
fibre membrane
8
membrane bioreactors
8
inlet concentrations
8
ebrt 187
8
187 62 s
8
shock loads
8
resilience hollow
4
bioreactors treating
4
treating steady
4

Similar Publications

Synthesis of UiO-66-NH@PSF Hollow Fiber Membrane with Enhanced Simultaneous Adsorption of Pb and Phosphate for Hydrogen Peroxide Purification.

ACS Appl Mater Interfaces

January 2025

Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.

Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.

View Article and Find Full Text PDF

Hidden Threat in Turbid Waters: Quantifying and Modeling the Bioaccumulation and Risks of Particulate Metals to Clams.

Environ Pollut

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

High-Performance Polyolefin Material: Synthesis, Properties, and Application of Poly(4-Methyl-1-pentene).

Int J Mol Sci

January 2025

School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.

As a kind of high-performance thermoplastic crystalline resin, poly(4-methyl-1-pentene) (PMP) is characterized by its low density, low dielectric constant, exceptional mechanical and chemical properties, high transparency, and gas permeability. PMP has recently received more attention since COVID-19, because it is used as a hollow-fiber membrane for extracorporeal membrane oxygenation (ECMO) based on its high permeability and excellent biocompatibility. This review summarizes the chemical structure, synthesis, properties, and application of PMP.

View Article and Find Full Text PDF

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!