Rhabdomyolysis induced acute kidney injury (RIAKI) is a life-threatening condition responsible for approximately 19-58% of AKI cases worldwide. We performed an intramuscular injection of glycerol (10 mL/kg) in male wistar rats to induce AKI. Epigallocatechin gallate (EGCG) was administered for 3 consecutive days to evaluate its protective effects. We observed significant downregulation in serum creatinine, blood urea nitrogen (BUN) and LDH at different time points on EGCG treatment groups in a dose-dependent manner. Similarly, H&E staining also revealed that EGCG was able to reduce the formation of damaged tubules and tubular necrosis which was prominently spread throughout the kidney tissue of glycerol treatment group. Concomitantly, we observed upregulated inflammation, ER stress and elevated oxidative stress in the glycerol treated group only, which was significantly normalized upon EGCG treatment in both in vitro and in vivo studies. The occurrence of apoptosis in kidney tubules was found to be relatively higher in glycerol treated group and HO treated HEK-293 cells. The results obtained after EGCG treatment revealed a significant decrease in apoptotic cell population, which was further validated by immunofluorescence staining against p53 and comet assay in HEK-293 cells and p53 IHC in kidney tissues. Western blotting also revealed a systemic downregulation of intrinsic mitochondrial apoptotic pathway markers such as bax, bcl-2, pro and cleaved caspase 3, caspase 9 and PARP1. Additionally, the results for flow cytometry analysis and TUNEL assay corroborated apoptotic equilibrium. Conclusively, we reckon EGCG as a multi-therapeutic natural product that can be used the for treatment of AKI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2022.109134DOI Listing

Publication Analysis

Top Keywords

egcg treatment
12
acute kidney
8
kidney injury
8
epigallocatechin gallate
8
glycerol treated
8
treated group
8
hek-293 cells
8
egcg
6
kidney
5
treatment
5

Similar Publications

(-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:

Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function.

View Article and Find Full Text PDF

The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity.

View Article and Find Full Text PDF

Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes.

Nutrients

December 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Lokman Hekim University, 06510 Çankaya, Ankara, Turkey.

Background/objectives: In this study, the potential effects are evaluated of epigallocatechin gallate (EGCG) on the prognosis of diabetes and insulin resistance.

Methods: In an experiment, 35 male Wistar albino rats were used and in the streptozotocin (STZ)-induced diabetic rats, the effects were examined of different doses (50 mg/kg, 100 mg/kg, 200 mg/kg) of EGCG on metabolic parameters associated with diabetes and insulin resistance.

Results: The findings show favorable effects of EGCG on fasting blood glucose levels, insulin secretion, insulin resistance, and beta cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!