Distinct responses of Pseudomonas aeruginosa PAO1 exposed to different levels of polystyrene nanoplastics.

Sci Total Environ

State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Published: December 2022

Large amounts of discarded plastics in the environment can be aged into microplastics and nanoplastics, which are not easily removed, posing potential nonnegligible risks to the ecosystem and human health. Although previous studies have revealed that nanoplastics have detrimental impacts on microorganisms, the potential molecular mechanisms of nanoplastic particles' effect on microbial growth and metabolism are still lacking. Here, multiple responses of Pseudomonas aeruginosa PAO1 (PAO1) to different levels of polystyrene nanoplastics (PS NPs) exposure were investigated by physiological experiments, live/dead staining, redox status, and genome-wide RNA sequencing. The results showed that PS NPs had dual effects on PAO1, and different concentrations of PS NPs demonstrated different effects on the growth and metabolism of PAO1. All levels of PS NPs had no obvious biocidal effect on PAO1. The production and consumption of ROS were in dynamic equilibrium and could be regulated genetically to ensure that the ROS level was in the biotolerable range. 20 and 50 mg/L of PS NPs severely inhibited the nitrate reduction, while 0.1 mg/L of PS NPs promoted the denitrification and TCA cycle. Meanwhile, 20 and 50 mg/L of PS NPs resulted in intense down-regulation of genes involved in denitrification. In contrast, the expression of genes involved in respiration is promoted with generated energy to withstand stress from high-level PS NPs, coinciding with the physiological results. In addition, our results showed that PS NPs concentrations of 20 and 50 mg/L exposure substantially up-regulated the expression of genes encoding for flagellar biosynthesis and biofilm formation to tackle the stress. Our findings would provide new insights into the interactions between environmental bacteria and PS NPs at the transcriptional level, thereby enhancing our understanding of the potential risks of PS NPs to microbial ecosystems and public health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158214DOI Listing

Publication Analysis

Top Keywords

mg/l nps
12
nps
11
responses pseudomonas
8
pseudomonas aeruginosa
8
aeruginosa pao1
8
levels polystyrene
8
polystyrene nanoplastics
8
growth metabolism
8
pao1 levels
8
genes involved
8

Similar Publications

Quantitative tracking of the transformation of micro- and nanoplastics in simulated human body fluid.

J Hazard Mater

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan 430056, China.

Micro- and nanoplastics (MNPs) are widespread in the environment and food, posing ingestion risks through various pathways. However, their transformation in human body fluids (SBFs), especially the formation of secondary nanoparticles (NPs), is not well understood due to inadequate quantification methods. This study proposed a robust method for quantifying eight common MNPs using pressurized liquid extraction (PLE) for pretreatment and pyrolysis gas chromatography-quadrupole time-of-flight mass spectrometry (Py-GC-QTOF-MS) for analysis.

View Article and Find Full Text PDF

Enhanced uptake of perfluorooctanoic acid by polystyrene nanoparticles in Pacific oyster (Magallana gigas).

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Edmonton, Alberta, Canada. Electronic address:

The effects of plastic pollution on marine organisms is of growing concern. The hydrophobic surface of plastics adsorbs organic contaminants and can alter the rate of chemical uptake in fishes. Per-fluorinated organic chemicals such as Perfluorooctanoic acid (PFOA) are highly hydrophobic toxic chemicals that adsorb to hydrophobic surfaces.

View Article and Find Full Text PDF

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage.

J Environ Manage

December 2024

National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq.

View Article and Find Full Text PDF

Unlabelled: Today, nanoplastics (NPs) are a growing environmental concern due to their persistence and widespread distribution, posing risks to ecosystems and human health. Their ability to transport pollutants makes them particularly dangerous, underscoring the urgent need for effective removal methods. Herein, we report the synthesis of an environmentally friendly material that enables the magnetic removal of polystyrene nanoparticles (PSNPs) from aqueous solutions by green chemistry approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!