SETD4 cells contribute to brain development and maintain adult stem cell reservoir for neurogenesis.

Stem Cell Reports

MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China. Electronic address:

Published: September 2022

Cellular quiescence facilitates maintenance of neural stem cells (NSCs) and their subsequent regenerative functions in response to brain injury and aging. However, the specification and maintenance of NSCs in quiescence from embryo to adulthood remain largely unclear. Here, using Set domain-containing protein 4 (SETD4), an epigenetic determinant of cellular quiescence, we mark a small but long-lived NSC population in deep quiescence in the subventricular zone of adult murine brain. Genetic lineage tracing shows that SETD4 cells appear before neuroectoderm formation and contribute to brain development. In the adult, conditional knockout of Setd4 resulted in quiescence exit of NSCs, generating newborn neurons in the olfactory bulb and contributing to damage repair. However, long period deletion of SETD4 lead to exhaustion of NSC reservoir or SETD4 overexpression caused quiescence entry of NSCs, leading to suppressed neurogenesis. This study reveals the existence of long-lived deep quiescent NSCs and their neurogenetic capacities beyond activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481920PMC
http://dx.doi.org/10.1016/j.stemcr.2022.07.017DOI Listing

Publication Analysis

Top Keywords

setd4 cells
8
contribute brain
8
brain development
8
cellular quiescence
8
setd4
6
quiescence
6
nscs
5
cells contribute
4
brain
4
development maintain
4

Similar Publications

Recent genome-wide association studies (GWAS) identified 518 significant loci associated with bone mineral density (BMD), including variants at the RUNX1 locus (rs13046645, rs2834676, and rs2834694). However, their regulatory impact on RUNX1 expression and bone formation remained unclear. This study utilized human induced pluripotent stem cells (iPSCs) differentiated into osteoblasts to investigate these variants' regulatory roles.

View Article and Find Full Text PDF

Activated dormant stem cells recover spermatogenesis in chemoradiotherapy-induced infertility.

Cell Rep

August 2024

MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown.

View Article and Find Full Text PDF

TBK1-stabilized ZNF268a recruits SETD4 to methylate TBK1 for efficient interferon signaling.

J Biol Chem

December 2023

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China; School of Ecology and Environment, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of Ministry of Education, Tibet University, Lhasa, Tibet, P.R. China. Electronic address:

Sufficient activation of interferon signaling is critical for the host to fight against invading viruses, in which post-translational modifications have been demonstrated to play a pivotal role. Here, we demonstrate that the human KRAB-zinc finger protein ZNF268a is essential for virus-induced interferon signaling. We find that cytoplasmic ZNF268a is constantly degraded by lysosome and thus remains low expressed in resting cell cytoplasm.

View Article and Find Full Text PDF

SETD4 inhibits prostate cancer development by promoting H3K27me3-mediated NUPR1 transcriptional repression and cell cycle arrest.

Cancer Lett

November 2023

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China. Electronic address:

The suppressor of variegation enhancer of zeste-trithorax (SET) domain methyltransferases have been reported to function as key regulators in multiple tumor types by catalyzing histone lysine methylation. Nevertheless, our understanding on the role of these lysine methyltransferases, including SETD4, in prostate cancer (PCa) remains limited. Hence, the specific role of SETD4 in PCa was investigated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!