Hypoxia-inducible factor 1 (HIF-1), a transcriptional activator that mediates cellular responses to hypoxic stress, is essential for tumor progression. It is a heterodimer comprising HIF1α and HIF1β, with multiple interfaces among their PAS-A, PAS-B, and bHLH domains. HIF1β is also known as aryl hydrocarbon receptor nuclear translocator (ARNT). Casein kinase 1δ-dependent phosphorylation of the solvent-front residue S247 on the HIF1α PAS-B domain interrupts HIF1α-ARNT complex formation and reduces HIF-1 transcription activity. However, S247 is involved in neither HIF1α-ARNT complex formation nor stabilization of the relative orientation between the HIF1α PAS-A and PAS-B domains. To uncover the underlying allosteric mechanism, we conducted Gaussian accelerated molecular dynamics simulations and identified two distinct conformations of the pS247-carrying HIF1α PAS-B domain: H291-in and H291-out. The H291-in structure can associate with the HIF1α PAS-A domain and form a V-shaped pouch to accommodate the ARNT PAS-A domain, but it cannot associate with the ARNT PAS-B domain. By contrast, the H291-out structure can bind to the ARNT PAS-B domain, but its association with the HIF1α PAS-A domain leads to an unsuitable relative orientation to accommodate the ARNT PAS-A domain. Both conformations were also collected in parallel simulations of the unphosphorylated PAS-B domain. Both structures manage to associate with the ARNT PAS-B and HIF1α PAS-A domains; thus, they are adequate for HIF1α-ARNT complex formation. The domain-domain contact pattern in a phosphorylated variant is shuffled by an order-to-disorder structural switch, triggered by the newly formed K251-pS247 interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106006DOI Listing

Publication Analysis

Top Keywords

pas-b domain
24
hif1α pas-a
16
pas-a domain
16
hif1α pas-b
12
hif1α-arnt complex
12
complex formation
12
arnt pas-b
12
domain
10
pas-b
9
order-to-disorder structural
8

Similar Publications

While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR.

View Article and Find Full Text PDF

Modulation of aryl hydrocarbon receptor activity by halogenated indoles.

Bioorg Med Chem

November 2024

Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.

The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles.

View Article and Find Full Text PDF

The low survival rate of adult T-cell leukemia/lymphoma (ATL) underscores the critical need for innovative therapeutic agents. While the pharmacokinetics of HDACis have been documented in several hematological neoplasms, there is a notable gap in research regarding their activity against ATL. Given that hypoxia can induce unpredictable effects on lymphoma cells, this study aimed to evaluate the toxic effects of MS-275 and novel analogs on ATL cells in hypoxic condition for the first time.

View Article and Find Full Text PDF

In patients with von-Hippel Lindau (VHL) disease, hypoxia-independent accumulation of HIF-2α leads to increased transcriptional activity of HIF-2α:ARNT that drives cancers such as renal cell carcinoma. Belzutifan, a recently FDA-approved drug, is designed to prevent the transcriptional activity of HIF-2α:ARNT, thereby overcoming the consequences of its unnatural accumulation in VHL-dependent cancers. Emerging evidence suggests that the naturally occurring variant G323E located in the HIF-2α drug binding pocket prevents inhibitory activity of belzutifan analogs, though the mechanism of inhibition remains unclear.

View Article and Find Full Text PDF

The molecular mechanisms underlying the observed anticancer effects of flavonoids remain unclear. Increasing evidence shows that the aryl hydrocarbon receptor (AHR) plays a crucial role in neoplastic disease progression, establishing it as a potential drug target. This study evaluated the potential of hydroxy flavonoids, known for their anticancer properties, to interact with AHR, both in silico and in vitro, aiming to understand the mechanisms of action and identify selective AHR modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!