The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration.

J Hazard Mater

State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China.

Published: October 2022

Arbuscular mycorrhizal fungi (AMF) is a vital strategy to enhance the phytoremediation of cadmium (Cd) pollution. However, the function of AMF was influenced by phosphorus (P) concentration. To reveal the effect of AMF on the Cd accumulation of host plants under different P concentrations and how the AMF and P interact, this study comparatively analyzed the regulatory effects of AMF on the Cd response, extraction, and transportation processes of Phragmites australis (P. australis) under different P levels, and explored its physiological, biochemical and molecular biological mechanisms. The study showed that AMF could induce different growth allocation strategies in response to Cd stress. Moreover, AMF promoted plant Cd tolerance and detoxification by enhancing P uptake, Cd passivation, Cd retention in the cell wall, and functional group modulation. Under P starvation treatments, AMF promoted Cd uptake by inducing Cd to enter the iron pathway, increased the transport coefficient by 493.39%, and retained Cd in stems. However, these effects disappeared following the addition of P. Additionally, AMF up-regulated the expression of ZIP, ZIP, and NRAMP genes to promote cadmium uptake at low, medium, and high phosphorus levels, respectively. Thus, the Cd response mechanism of the AMF-P. australis symbiotic system was P dose-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129800DOI Listing

Publication Analysis

Top Keywords

amf
9
arbuscular mycorrhizal
8
cadmium uptake
8
phragmites australis
8
phosphorus concentration
8
amf promoted
8
mechanism arbuscular
4
mycorrhizal enhancing
4
enhancing cadmium
4
uptake
4

Similar Publications

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.

View Article and Find Full Text PDF

Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus.

J Hazard Mater

January 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots.

View Article and Find Full Text PDF

Ecological filters shape arbuscular mycorrhizal fungal communities in the rhizosphere of secondary vegetation species in a temperate forest.

PLoS One

January 2025

Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.

The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.

View Article and Find Full Text PDF

The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.

View Article and Find Full Text PDF

Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!