In the field of microplastics research, more accurate standardised methods and analytical techniques still need to be explored. In this study, a new method for the microplastics quantitatively and qualitatively analysis by two-phase (ethyl acetate-water) system combined with confocal Raman spectroscopy was developed. Microplastics can be separated from false-positive microplastics in beach sand and marine sediment, attributing to the hydrophobic-lipophilic interaction (HLI) of the two-phase system. Results show that the recovery rates of complex environment microplastics (polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide 66 (PA 66), polycarbonate (PC) and polyethylene (PE)) are higher than 92.98%. Moreover, the new technique can also be used to detect hydrophobic and lipophilic antibiotics, such as sulfamethoxazole (SMX), erythromycin (EM), madimycin (MD), and josamycin (JOS), which adsorbed on microplastics and are extracted based on the dissolving-precipitating mechanism. This innovative research strategy provides a new scope for further detection of marine environment microplastics and toxic compounds adsorbed on its surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129803 | DOI Listing |
Int Immunopharmacol
December 2024
Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:
The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India. Electronic address:
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:
Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!