Purpose: To assess phase retardation and corneal sublayer thickness repeatability using ultrahigh-resolution polarization-sensitive optical coherence tomography (PS-OCT).
Setting: Narayana Nethralaya Eye Hospital, Bangalore.
Design: Observational.
Methods: In this study, all eyes were imaged using a custom-built ultrahigh-resolution PS-OCT and high-resolution hybrid OCT (MS-39). The repeatability of phase retardation en face maps and corneal sublayer thickness profiles was evaluated. The reflectivity and phase retardation were calculated from the 2 orthogonal polarization channels to generate en face maps of phase retardation and corneal sublayer thicknesses. 3 consecutive measurements of all participants were acquired for each eye. For each measurement, the participant was asked to sit back and was realigned again. The repeatability was assessed using the intraclass correlation coefficient (ICC).
Results: The study included 20 healthy eyes of 20 participants. The phase retardation en face maps showed preferential arrangement of collagen fibrils with least retardation in the apex and maximum retardation in the periphery. The phase retardation showed excellent repeatability (ICC >0.95) in all zones. The Bowman layer and stromal layer thicknesses were measured with excellent repeatability (ICC >0.93 and >0.99, respectively). Significant differences ( P < .05) in stromal layer thickness were observed between MS-39 and PS-OCT. The repeatability of epithelial thickness measurements was better with PS-OCT than MS-39.
Conclusions: The combinational assessment of corneal birefringence and sublayer thicknesses shows the advanced potential of ultrahigh-resolution PS-OCT in routine clinical practice over current OCT devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/j.jcrs.0000000000001033 | DOI Listing |
Materials (Basel)
January 2025
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.
In this paper, we demonstrate a blazed phase grating to achieve tunable beam steering and propose a novel algorithm to reduce the stripe noise in wrapped phase. To control the diffraction angle to steer light to the desired direction, an electrically tunable transmission-type beam deflector based on liquid crystals is introduced, and electric fields are applied to the patterned indium tin oxide electrodes to change its phase retardation. Two different 2π phase-wrapping methods are applied to obtain various diffraction angles within the minimum cell-gap, and the method of equal interval of phase achieves a worthwhile diffraction efficiency compared to the methods based on equal interval of diffraction angle.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, China.
Light nonaqueous-phase liquids (LNAPLs) are the main source of organic pollution in soil and groundwater environments. The capillary zone, with varying moisture contents, is the last barrier against the infiltration of LNAPL pollutants into groundwater and plays an important role in their migration and transformation. However, the effect and mechanism of the moisture content in the capillary zone on LNAPL pollutant migration are still unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University, school of materials science and engineering, CHINA.
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions.
View Article and Find Full Text PDFEnviron Res
January 2025
Zijin School of Geology and Mining, Fuzhou University, Fuzhou, 350108, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China. Electronic address:
The migration and immobilization of heavy metals in soil and groundwater pose significant environmental challenges, particularly in the context of Cr(VI), a highly toxic and mobile contaminant. Self-hardening slurry materials, commonly used for trench cutoff walls, have gained great attention due to their potential for pollutant containment. However, the relationship between their adsorption properties and pollutant diffusion behaviors remains poorly understood.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physical Chemistry, Sciences II, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland.
The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!