Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mixtures of Ce-doped rare-earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A-site cations with an equiatomic ratio allows for the stabilization of a single-crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare-earth aluminum perovskite oxide (La Lu Y Gd Ce )AlO and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd and energy transfer to Ce with 405 nm emission are observed, which represents the potential for high-energy conversion. These experimental results also offer the pathway to tunable optical properties of high-entropy rare-earth epitaxial perovskite films for a range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561869 | PMC |
http://dx.doi.org/10.1002/advs.202202671 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!