Nature-Inspired 3D Spiral Grass Structured Graphene Quantum Dots/MXene Nanohybrids with Exceptional Photothermal-Driven Pseudo-Capacitance Improvement.

Adv Sci (Weinh)

Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

Published: October 2022

Solar-thermal conversion is considered as a green and simple means to improve the performance of energy storage materials, but often limited by the intrinsic photothermal properties of materials and crude structure design. Herein, inspired by the unique light trapping effect of wide leaf spiral grass during photosynthesis, a biomimetic structural photothermal energy storage system is developed, to further promote the solar thermal-driven pseudo capacitance improvement. In this system, three-dimensional printed tortional Kelvin cell arrays structure with interesting light trapping property functions as "spiral leaf blades" to improve the efficiency of light absorption, while graphene quantum dots/MXene nanohybrids with wide photothermal response range and strong electrochemical activity serve as "chloroplast" for photothermal conversion and energy storage. As expected, the biomimetic structure-enhanced photothermal supercapacitor achieves an ideal solar thermal-driven pseudo capacitance enhancement (up to 304%), an ultrahigh areal capacitance of 10.47 F cm , remarkable photothermal response (surface temperature change of 50.1 °C), excellent energy density (1.18 mWh cm ) and cycling stability (10000 cycles). This work not only offers a novel enhancement strategy for photothermal applications, but also inspires new structure designs for multifunctional energy storage and conversion devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596846PMC
http://dx.doi.org/10.1002/advs.202204086DOI Listing

Publication Analysis

Top Keywords

energy storage
16
spiral grass
8
graphene quantum
8
quantum dots/mxene
8
dots/mxene nanohybrids
8
light trapping
8
solar thermal-driven
8
thermal-driven pseudo
8
pseudo capacitance
8
photothermal response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!