MYC is one of the most dysregulated oncogenes and is thought to be fundamental to tumor formation and/or maintenance in many cancer types. This dominant pro-tumor activity makes MYC an attractive target for cancer therapy. However, MYC is a transcription factor lacking enzymatic activity, and the structure of one of its two domains is unknown e.g., its transactivation domain. Consequently, few direct MYC-targeting therapies have been developed, and none have been successful in the clinic. Nevertheless, significant effort has been devoted to understanding the mechanisms of oncogenic MYC activity with the objective of uncovering novel vulnerabilities of MYC-dependent cancers. These extensive investigations have revealed in detail how MYC translocation, amplification, and other upstream perturbations contribute to MYC activity in cancer. However, missense mutations of the MYC gene have remained relatively understudied for their potential role in MYC-mediated oncogenesis. While the function of several low-frequency mutations in MYC have been described, our understanding of other equally or more frequent mutations is incomplete. Herein, we define the function of a recurrent missense mutation in MYC resulting in the substitution S146L. This mutation enhances the interaction between MYC and its cofactor TRRAP and may enhance oncogenic MYC activity in certain cellular contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417018PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272771PLOS

Publication Analysis

Top Keywords

myc activity
12
myc
11
oncogenic myc
8
mutations myc
8
activity
5
s146l myc
4
myc context-dependent
4
context-dependent activating
4
activating substitution
4
cancer
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

N-methyladenosine RNA methylation regulates microplastics-induced cell senescence in the rainbow trout liver.

Sci Total Environ

January 2025

School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China. Electronic address:

Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!