Agriculture in India accounts for 18% of greenhouse gas (GHG) emissions and uses significant land and water. Various socioeconomic factors and food subsidies influence diets in India. Indian food systems face the challenge of sustainably nourishing the 1.3 billion population. However, existing studies focus on a few food system components, and holistic analysis is still missing. We identify Indian food systems covering six food system components: food consumption, production, processing, policy, environmental footprints, and socioeconomic factors from the latest Indian household consumer expenditure survey. We identify 10 Indian food systems using k-means cluster analysis on 15 food system indicators belonging to the six components. Based on the major source of calorie intake, we classify the ten food systems into production-based (3), subsidy-based (3), and market-based (4) food systems. Home-produced and subsidized food contribute up to 2000 kcal/consumer unit (CU)/day and 1651 kcal/CU/day, respectively, in these food systems. The calorie intake of 2158 to 3530 kcal/CU/day in the food systems reveals issues of malnutrition in India. Environmental footprints are commensurate with calorie intake in the food systems. Embodied GHG, land footprint, and water footprint estimates range from 1.30 to 2.19 kg CO2eq/CU/day, 3.89 to 6.04 m2/CU/day, and 2.02 to 3.16 m3/CU/day, respectively. Our study provides a holistic understanding of Indian food systems for targeted nutritional interventions on household malnutrition in India while also protecting planetary health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416984PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270342PLOS

Publication Analysis

Top Keywords

food systems
40
food
16
indian food
16
food system
12
calorie intake
12
systems
10
socioeconomic factors
8
system components
8
identify indian
8
environmental footprints
8

Similar Publications

The "food desert" problem has been treated under a national strategy in the United States and other countries. At present, there is little research on the phenomenon of "food desert" in China. This study takes Shanghai as the research area and proposes a multiscale analysis method using a linear tessellation model that splits the street network into homogeneous linear units.

View Article and Find Full Text PDF

The Satisfaction With Life Scale (SWLS) is a widely used self-report measure of subjective well-being, but studies of its measurement invariance across a large number of nations remain limited. Here, we utilised the Body Image in Nature (BINS) dataset-with data collected between 2020 and 2022 -to assess measurement invariance of the SWLS across 65 nations, 40 languages, gender identities, and age groups (N = 56,968). All participants completed the SWLS under largely uniform conditions.

View Article and Find Full Text PDF

Introduction: Androgenic alopecia is a multifactorial disease with a high incidence and a great psychological burden on patients. The current FDA-approved treatment is topical minoxidil or oral finasteride. However, both present significant limitations.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!