Thermodynamic Signatures of Genuinely Multipartite Entanglement.

Phys Rev Lett

School of Physics, IISER Thiruvananthapuram, Vithura, Kerala 695551, India.

Published: August 2022

The theory of bipartite entanglement shares profound similarities with thermodynamics. In this Letter we extend this connection to multipartite quantum systems where entanglement appears in different forms with genuine entanglement being the most exotic one. We propose thermodynamic quantities that capture a signature of genuineness in multipartite entangled states. Instead of entropy, these quantities are defined in terms of energy-particularly the difference between global and local extractable works (ergotropies) that can be stored in quantum batteries. Some of these quantities suffice as faithful measures of genuineness and to some extent distinguish different classes of genuinely entangled states. Along with scrutinizing properties of these measures we compare them with the other existing genuine measures, and argue that they can serve the purpose in a better sense. Furthermore, the generality of our approach allows us to define suitable functions of ergotropies capturing the signature of k nonseparability that characterizes qualitatively different manifestations of entanglement in multipartite systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.070601DOI Listing

Publication Analysis

Top Keywords

entangled states
8
entanglement
5
thermodynamic signatures
4
signatures genuinely
4
multipartite
4
genuinely multipartite
4
multipartite entanglement
4
entanglement theory
4
theory bipartite
4
bipartite entanglement
4

Similar Publications

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.

View Article and Find Full Text PDF

A novel domain feature disentanglement method for multi-target cross-domain mechanical fault diagnosis.

ISA Trans

January 2025

State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:

Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Scaling and networking a modular photonic quantum computer.

Nature

January 2025

Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.

Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!