The seminal work by Kazimierczuk et al. [Nature 514, 343 (2014)10.1038/nature13832] has shown the existence of highly excited exciton states in a regime, where the correspondence principle is applicable and quantum mechanics turns into classical mechanics; however, any interpretation of exciton spectra based on a classical approach to excitons is still missing. Here, we close this gap by computing and comparing quantum mechanical and semiclassical recurrence spectra of cuprous oxide. We show that the quantum mechanical recurrence spectra exhibit peaks, which, by application of semiclassical theories and a scaling transformation, can be directly related to classical periodic exciton orbits. The application of semiclassical theories to exciton physics requires the detailed analysis of the classical exciton dynamics, including three-dimensional orbits, which strongly deviate from hydrogenlike Keplerian orbits. Our findings illuminate important aspects of excitons in semiconductors by directly relating the quantum mechanical band structure splittings of excitons to the corresponding classical exciton dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.067401DOI Listing

Publication Analysis

Top Keywords

quantum mechanical
16
recurrence spectra
12
exciton orbits
8
mechanical recurrence
8
application semiclassical
8
semiclassical theories
8
classical exciton
8
exciton dynamics
8
exciton
6
quantum
5

Similar Publications

Understanding the ligand field interactions in lanthanide-containing magnetic molecular complexes is of paramount importance for understanding their magnetic properties, and simple models for rationalizing their effects are much desired. In this work, the equivalence between electrostatic models, which derive their results from calculating the electrostatic interaction energy of the charge density of the 4f electrons in an electrostatic potential representing the ligands, and the common quantum mechanical effective spin Hamiltonian in the space of the ground multiplet is formulated in detail. This enables the construction of an electrostatic potential for any given ligand field Hamiltonian and discusses the effects of the ligand field interactions in terms of an interaction of a generalized 4f charge density with the electrostatic potential.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

BTG13, a non-heme iron-dependent enzyme with a distinctive coordination environment of four histidines and a carboxylated lysine, has been found to catalyze the cleavage of the C4a-C10 bond in anthraquinone. Contrary to typical dioxygenase mechanisms, our quantum mechanical/molecular mechanical (QM/MM) calculations reveal that BTG13 functions more like a monooxygenase. It selectively inserts an oxygen atom into the C10-C4a bond, creating a lactone species that subsequently hydrolyzes, leading to the formation of a ring-opened product.

View Article and Find Full Text PDF

Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. 2020, 152, 044105).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!