A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Angular Momentum Transfer via Relativistic Spin-Lattice Coupling from First Principles. | LitMetric

Angular Momentum Transfer via Relativistic Spin-Lattice Coupling from First Principles.

Phys Rev Lett

Department of Chemistry/Physical Chemistry, LMU Munich, Butenandtstrasse 11, D-81377 Munich, Germany.

Published: August 2022

The transfer and control of angular momentum is a key aspect for spintronic applications. Only recently, it was shown that it is possible to transfer angular momentum from the spin system to the lattice on ultrashort timescales. To contribute to the understanding of angular momentum transfer between spin and lattice degrees of freedom we present a scheme to calculate fully relativistic spin-lattice coupling parameters from first principles. In addition to the dipole-dipole interactions often discussed in the literature, these parameters give, in particular, access to the spin-lattice effects controlled by spin-orbit coupling. By treating changes in the spin configuration and atomic positions at the same level, closed expressions for the atomic spin-lattice coupling parameters can be derived in a coherent manner up to any order. Analyzing the properties of these parameters, in particular their dependence on spin-orbit coupling, we find that even in bcc Fe the leading term for the angular momentum exchange between the spin system and the lattice is a Dzyaloshiskii-Moriya-type interaction, which is due to the symmetry breaking distortion of the lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.067202DOI Listing

Publication Analysis

Top Keywords

angular momentum
20
spin-lattice coupling
12
momentum transfer
8
relativistic spin-lattice
8
spin system
8
system lattice
8
coupling parameters
8
spin-orbit coupling
8
angular
5
coupling
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!