Single-beam super-resolution microscopy, also known as superlinear microscopy, exploits the nonlinear response of fluorescent probes in confocal microscopy. The technique requires no complex purpose-built system, light field modulation, or beam shaping. Here, we present a strategy to enhance this technique's spatial resolution by modulating excitation intensity during image acquisition. This modulation induces dynamic optical nonlinearity in upconversion nanoparticles (UCNPs), resulting in variations of nonlinear fluorescence response in the obtained images. The higher orders of fluorescence response can be extracted with a proposed weighted finite difference imaging algorithm from raw fluorescence images to generate an image with higher resolution than superlinear microscopy images. We apply this approach to resolve single nanoparticles in a large area, improving the resolution to 132 nm. This work suggests a new scope for the development of dynamic nonlinear fluorescent probes in super-resolution nanoscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c02269 | DOI Listing |
Nanoscale
December 2024
Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering.
View Article and Find Full Text PDFOrganic-crystal-based optical terahertz (THz) sources and detectors are powerful tools for THz spectroscopy, owing to the wide frequency tunability. A drawback of this technique lies in the inherent absorption peaks of nonlinear crystals, leaving several gaps in the spectral coverage. As an alternative type of organic crystal, hydrogen-bonded OH1 is promising to complement the existing gaps.
View Article and Find Full Text PDFNanophotonics
July 2024
Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan.
We develop a new all-dielectric metasurface for designing high quality-factor (-factor) quasi-bound states in the continuum (quasi-BICs) using asymmetry kite-shaped nanopillar arrays. The -factors of quasi-BICs follow the quadratic dependence on the geometry asymmetry, and meanwhile their resonant spectral profiles can be readily tuned between Fano and Lorentzian lineshapes through the interplay with the broadband magnetic dipole mode. The third-harmonic signals of quasi-BIC modes exhibit a gain from 43.
View Article and Find Full Text PDFNano Lett
December 2024
Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen, 361102, Fujian, China.
Photon avalanche (PA) upconversion in lanthanide nanosystems represents a groundbreaking discovery, demonstrating an optical nonlinearity exceeding 50. This remarkable sensitivity to even the slightest light perturbations unlocks new possibilities for ultrasensitive biosensing, super-resolution imaging, and a range of other applications. This review delves into the fundamental mechanisms underlying PA and the approaches for controlling energy flow within these nanomaterials.
View Article and Find Full Text PDFMid-infrared (MIR) microcombs exhibit remarkable advantages for trace molecule detection, facilitating fast and precise spectral analysis. However, due to limitations in tunability and size of available MIR pump sources, it is difficult to achieve compact MIR mode-locked microcombs using traditional methods. Here, we propose the turnkey generation of MIR soliton and near-infrared second-harmonic microcombs in a single microresonator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!