Vision is an ability that depends on the precise structure and functioning of the retina. Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment, vision loss, and blindness. Immune system and immune response function maintain homeostasis in the microenvironment. Several genetic, metabolic, and environmental factors may alter retinal homeostasis, and these events may initiate various inflammatory cascades. The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which pose a threat to vision. In the current review, we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders. Moreover, this review paves the way to focus on therapeutic targets of the disease, which are found to be promising.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727454 | PMC |
http://dx.doi.org/10.4103/1673-5374.350192 | DOI Listing |
J Neuroinflammation
January 2025
Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111. Electronic address:
Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly. The exudative or wet form of AMD is caused by choroidal neovascularization (CNV) and subsequently a macular edema. Wet AMD can be effectively treated with anti-vascular endothelial growth factor (VEGF) therapies.
View Article and Find Full Text PDFJCI Insight
January 2025
Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, United States of America.
Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).
Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.
Clin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, The Netherlands.
Purpose: Cysticercosis, caused by Taenia solium larvae, can affect various ocular and extraocular structures, leading to significant morbidity. Ultrasound B-scan imaging plays a pivotal role in diagnosing and classifying cysticercosis lesions. The aim of the study was to describe the ultrasound B-scan characteristics of ocular and extraocular cysticercosis, proposing a classification system based on anatomical localization to enhance understanding and management.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
STZ eyetrial at the Centre for Ophthalmology, Tuebingen, Germany.
Purpose: Reports of gene therapy-associated retinal atrophies and inflammation have highlighted the importance of preclinical safety assessments of adeno-associated virus (AAV) vector systems. We evaluated in nonhuman primates (NHPs) the ocular safety and toxicology of a novel AAV gene therapy targeting retinitis pigmentosa caused by mutations in PDE6A, which has since been used in a phase I/II clinical trial (NCT04611503).
Methods: A total of 34 healthy cynomolgus animals (Macaca fascicularis) were treated with subretinal injections of rAAV.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!