A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinformatic analysis identifies potential key genes in the pathogenesis of age-related macular degeneration. | LitMetric

Purpose: Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in older individuals. More studies focused on screening the genes, which may be correlated with the development of AMD. With advances in various technologies like multiple microarray datasets, researchers could identify differentially expressed genes (DEGs) more accurately. Exploring abnormal gene expression in disease status can help to understand pathophysiological changes in complex diseases. This study aims to identify the key genes and upstream regulators in AMD and reveal factors, especially genetic association, and the prognosis of the development of this disease.

Methods: Data from expression profile GSE125564 and profile GSE29801 were obtained from the Gene Expression Omnibus (GEO) database. We analyzed DEGs using R software (version 3.6.3). Functional enrichment and PPI network analysis were performed using the R package and online database STRING (version 11.0).

Results: We compared AMD with normal and found 68 up-regulated genes (URGs) and 25 down-regulated genes (DRGs). We also compared wet AMD with dry AMD and found 41 DRGs in dry AMD. Further work including PPI network analysis, GO classification, and KEGG analysis was done to find connections with AMD. The URGs were mainly enriched in the biological process such as DNA replication, nucleoplasm, extracellular exosome, and cadherin binding. Besides, DRGs were mainly enriched in these functions such as an integral component of membrane and formation of the blood-aqueous barrier (BAB).

Conclusion: This study implied that core genes might involve in the process of AMD. Our findings may contribute to revealing the pathogenesis, developing new biomarkers, and raising strategies of treatment for AMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675553PMC
http://dx.doi.org/10.4103/ijo.IJO_3211_21DOI Listing

Publication Analysis

Top Keywords

amd
10
key genes
8
age-related macular
8
macular degeneration
8
gene expression
8
ppi network
8
network analysis
8
dry amd
8
genes
7
bioinformatic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!