Red light irradiation as an intervention for myopia.

Indian J Ophthalmol

Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Published: September 2022

Myopia is one of the main causes of visual impairment worldwide. Preventing myopia and providing myopia-related interventions are of paramount importance. Based on a thorough review of the available literature, we conclude that red light irradiation can produce hyperopia, resulting in myopia prevention and control. Further, we suggest that red light irradiation may be a powerful tool for myopia prevention and control in the future. At the same time, red light has a protective effect on the cornea and retina at the cellular level, suggesting that red light irradiation may be a safe and effective modality for delaying myopia. Therefore, this form of irradiation is expected to play an important role in the prevention and control of myopia. However, more studies are needed to enhance the current state of knowledge and inform medical guidelines more comprehensively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675534PMC
http://dx.doi.org/10.4103/ijo.IJO_15_22DOI Listing

Publication Analysis

Top Keywords

red light
20
light irradiation
16
prevention control
12
myopia prevention
8
myopia
7
red
5
irradiation
5
irradiation intervention
4
intervention myopia
4
myopia myopia
4

Similar Publications

Purposes: This meta-analysis aims to systematically analyze the efficacy of low-level red light (LRL) therapy for myopia control and prevention in children.

Methods: All the data were searched from the PubMed, EMBASE, and the Cochrane Library. The Cochrane Handbook was used to evaluate the quality of the included studies.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

One of the most frequently impacted locations by psoriasis is the scalp. It is seen in about 80% of psoriasis cases worldwide, and its treatment is challenging. To compare the efficacy and safety of excimer light versus topical methotrexate (MTX) 1% hydrogel in treatment of scalp psoriasis.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Mechanisms and applications of bacterial luciferase and its auxiliary enzymes.

Arch Biochem Biophys

January 2025

Department of Biochemistry and Center of Excellent in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand. Electronic address:

Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!