Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic soft collective fluctuations of the order parameters, which leave fingerprints in many observables and allow the phase competition to be scrutinized. Superconducting layered materials, where electron-electron interactions are enhanced with decreasing thickness, are promising candidates to display these correlation effects. In this work, the existence of a soft collective mode in single-layer NbSe , observed as a characteristic resonance excitation in high-resolution tunneling spectra is reported. This resonance is observed along with higher harmonics, its frequency Ω/2Δ is anticorrelated with the local superconducting gap Δ, and its amplitude gradually vanishes by increasing the temperature and upon applying a magnetic field up to the critical values (T and H ), which sets an unambiguous link to the superconducting state. Aided by a microscopic model that captures the main experimental observations, this resonance is interpreted as a collective Leggett mode that represents the fluctuation toward a proximate f-wave triplet state, due to subleading attraction in the triplet channel. These findings demonstrate the fundamental role of correlations in superconducting 2D transition metal dichalcogenides, opening a path toward unconventional superconductivity in simple, scalable, and transferable 2D superconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202206078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!