The rhizosphere is the region around the plant roots where maximum microbial activities occur. In the rhizosphere, microorganisms' beneficial and harmful activities affect plant growth and development. The mutualistic rhizospheric bacteria which improve plant growth and health are known as plant growth-promoting rhizobacteria (PGPR). They are very important due to their ability to help the plant in diverse ways. PGPR such as Pseudomonas, Bacillus, Azospirillum, Azotobacter, Arthrobacter, Achromobacter, Micrococcus, Enterobacter, Rhizobium, Agrobacterium, Pantoea and Serratia are now very well known. Rhizomicrobiome plays critical roles in nutrient acquisition and assimilation, improved soil texture, secreting and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics and various signal compounds, all leading to the enhancement of plant growth and development. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. In this review, we highlight the rhizobacteria diversity and cutting-edge findings focusing on the role of a PGPR in plant growth and development. We also discussed the role of PGPR in resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15796 | DOI Listing |
Ecol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFSci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFAMB Express
January 2025
Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza, Egypt.
Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.
View Article and Find Full Text PDFDrought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!