YT521-B homology domain family proteins as N6-methyladenosine readers in tumors.

Front Genet

Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.

Published: August 2022

N6-methyladenosine (m6A) is the most abundant internal chemical modification of eukaryotic mRNA and plays diverse roles in gene regulation. The m6A modification plays a significant role in numerous cancer types, including kidney, stomach, lung, bladder tumors, and melanoma, through varied mechanisms. As direct m6A readers, the YT521-B homology domain family proteins (YTHDFs) play a key role in tumor transcription, translation, protein synthesis, tumor stemness, epithelial-mesenchymal transition (EMT), immune escape, and chemotherapy resistance. An in-depth understanding of the molecular mechanism of YTHDFs is expected to provide new strategies for tumor treatment. In this review, we provide a systematic description of YTHDF protein structure and its function in tumor progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395638PMC
http://dx.doi.org/10.3389/fgene.2022.934223DOI Listing

Publication Analysis

Top Keywords

yt521-b homology
8
homology domain
8
domain family
8
family proteins
8
proteins n6-methyladenosine
4
n6-methyladenosine readers
4
readers tumors
4
tumors n6-methyladenosine
4
n6-methyladenosine m6a
4
m6a abundant
4

Similar Publications

Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.

Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.

View Article and Find Full Text PDF

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

Single-cell transcriptome profiling of mA regulator-mediated methylation modification patterns in elderly acute myeloid leukemia patients.

Mol Biomed

December 2024

Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.

Millions of people worldwide die of acute myeloid leukaemia (AML) each year. Although N6-methyladenosine (mA) modification has been reported to regulate the pathogenicity of AML, the mechanisms by which mA induces dysfunctional hematopoietic differentiation in elderly AML patients remain elusive. This study elucidates the mechanisms of the mA landscape and the specific roles of mA regulators in hematopoietic cells of elderly AML patients.

View Article and Find Full Text PDF

N6-methyladenosine (mA) exerts many of its regulatory effects on eukaryotic mRNAs by recruiting cytoplasmic YT521-B homology-domain family (YTHDF) proteins. Here, we show that in Arabidopsis thaliana, the interaction between mA and the major YTHDF protein ECT2 also involves the mRNA-binding ALBA protein family. ALBA and YTHDF proteins physically associate via a deeply conserved short linear motif in the intrinsically disordered region of YTHDF proteins and their mRNA target sets overlap, with ALBA4 binding sites being juxtaposed to mA sites.

View Article and Find Full Text PDF

YT521-B homology domain family 2 (YTHDF2), a pivotal m6A-binding protein, is now understood to significantly influence a diverse array of biological functions, including cell migration, proliferation, differentiation, and inflammatory responses. Additionally, YTHDF2 participates in mRNA decay and pre-rRNA processing. This study explored the specific role of YTHDF2 in the pathogenesis of psoriasis and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!