Coagulation and complement: Key innate defense participants in a seamless web.

Front Immunol

Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.

Published: August 2022

In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, "In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body's defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities." Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398469PMC
http://dx.doi.org/10.3389/fimmu.2022.918775DOI Listing

Publication Analysis

Top Keywords

seamless web
12
coagulation complement
8
complement key
4
key innate
4
innate defense
4
defense participants
4
participants seamless
4
web 1969
4
1969 oscar
4
oscar ratnoff
4

Similar Publications

Conventional personal health record (PHR) management systems are centralized, making them vulnerable to privacy breaches and single points of failure. Despite progress in standardizing healthcare data with the FHIR format, hospitals often lack efficient platforms for transferring PHRs, leading to redundant tests and delayed treatments. To address these challenges, we propose a decentralized PHR management system leveraging Personal Data Stores (PDS) and Decentralized Identifiers (DIDs) in line with the Web 3.

View Article and Find Full Text PDF

Aim: This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.

Materials And Methods: A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as "bone regeneration" and "CGF" from 2014 to 2024. Only English-language clinical studies involving human subjects were included.

View Article and Find Full Text PDF

Background: With the rising global burden of chronic diseases, traditional health management models are encountering significant challenges. The integration of artificial intelligence (AI) into chronic disease management has enhanced patient care efficiency, optimized treatment strategies, and reduced healthcare costs, providing innovative solutions in this field. However, current research remains fragmented and lacks systematic, comprehensive analysis.

View Article and Find Full Text PDF

StreamChol: a web-based application for predicting cholestasis.

J Cheminform

January 2025

Research Programme On Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute, Barcelona, Spain.

This article introduces StreamChol, a software for developing and applying mechanistic models to predict cholestasis. StreamChol is a Streamlit application, usable as a desktop application or web-accessible software when installed on a server using a docker container.StreamChol allows a seamless integration of pharmacokinetic analyses with Machine Learning models.

View Article and Find Full Text PDF

AUTOGRAPH: Chemical Reaction Networks in 3D.

J Chem Inf Model

January 2025

Theory and Simulation of Complex Systems, Institute of Physical Chemistry, Heinrich-Heine Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Understanding and analyzing large-scale reaction networks is a fundamental challenge due to their complexity and size, often beyond human comprehension. In this paper, we introduce AUTOGRAPH, the first web-based tool designed for the interactive three-dimensional (3D) visualization and construction of reaction networks. AUTOGRAPH emphasizes ease of use, allowing users to intuitively build, modify, and explore individual reaction networks in real time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!