Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-mapping approaches and their use in understanding structures within RNA virus genomes. In particular, we focus on the genome structures of the dengue, Zika, and SARS-CoV-2 viruses due to recent significant outbreaks of these viruses around the world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415818 | PMC |
http://dx.doi.org/10.3390/v14081795 | DOI Listing |
Vet Res Commun
January 2025
College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Chemistry, Assam University, Silchar, India.
The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).
View Article and Find Full Text PDFJ Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!