AI Article Synopsis

  • SARS-CoV-2 is rapidly mutating, specifically in its spike (S) protein, which affects its stability, transmission, and ability to adapt, thus understanding these changes is crucial for controlling its spread.
  • The study analyzes 19 months of S protein sequence data from across the US, employing multiple sequence alignment to identify mutations and sequence similarity networks to better understand the variants' distribution.
  • DiWANN networks provided superior insights into virus transmission compared to traditional methods, showcasing a more effective computational technique for tracking mutations in SARS-CoV-2 and potentially other viruses.

Article Abstract

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), which still infects hundreds of thousands of people globally each day despite various countermeasures, has been mutating rapidly. Mutations in the spike (S) protein seem to play a vital role in viral stability, transmission, and adaptability. Therefore, to control the spread of the virus, it is important to gain insight into the evolution and transmission of the S protein. This study deals with the temporal and geographical distribution of mutant S proteins from sequences gathered across the US over a period of 19 months in 2020 and 2021. The S protein sequences are studied using two approaches: (i) multiple sequence alignment is used to identify prominent mutations and highly mutable regions and (ii) sequence similarity networks are subsequently employed to gain further insight and study mutation profiles of concerning variants across the defined time periods and states. Additionally, we tracked the variants using visualizations on geographical maps. The visualizations produced using the Directed Weighted All Nearest Neighbors (DiWANN) networks and maps provided insights into the transmission of the virus that reflect well the statistics reported for the time periods studied. We found that the networks created using DiWANN are superior to commonly used approximate distance networks created using BLAST bitscores. The study offers a richer computational approach to analyze the transmission profile of the prominent S protein mutations in SARS-CoV-2 and can be extended to other proteins and viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413517PMC
http://dx.doi.org/10.3390/v14081672DOI Listing

Publication Analysis

Top Keywords

sequence similarity
8
temporal geographical
8
geographical distribution
8
mutations sars-cov-2
8
spike protein
8
gain insight
8
time periods
8
networks created
8
protein
5
similarity network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!