A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks. | LitMetric

State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.

Sensors (Basel)

Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan.

Published: August 2022

State-of-charge (SOC) is a relative quantity that describes the ratio of the remaining capacity to the present maximum available capacity. Accurate SOC estimation is essential for a battery-management system. In addition to informing the user of the expected usage until the next recharge, it is crucial for improving the utilization efficiency and service life of the battery. This study focuses on applying deep-learning techniques, and specifically convolutional residual networks, to estimate the SOC of lithium-ion batteries. By stacking the values of multiple measurable variables taken at many time instants as the model inputs, the process information for the voltage or current generation, and their interrelations, can be effectively extracted using the proposed convolutional residual blocks, and can simultaneously be exploited to regress for accurate SOCs. The performance of the proposed network model was evaluated using the data obtained from a lithium-ion battery (Panasonic NCR18650PF) under nine different driving schedules at five ambient temperatures. The experimental results demonstrated an average mean absolute error of 1.260%, and an average root-mean-square error of 0.998%. The number of floating-point operations required to complete one SOC estimation was 2.24 × 10. These results indicate the efficacy and performance of the proposed approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414385PMC
http://dx.doi.org/10.3390/s22166303DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
soc estimation
8
convolutional residual
8
performance proposed
8
state-of-charge estimation
4
estimation lithium-ion
4
batteries residual
4
residual convolutional
4
convolutional neural
4
neural networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!