With the rapid concurrent advance of artificial intelligence (AI) and Internet of Things (IoT) technology, manufacturing environments are being upgraded or equipped with a smart and connected infrastructure that empowers workers and supervisors to optimize manufacturing workflow and processes for improved energy efficiency, equipment reliability, quality, safety, and productivity. This challenges capital cost and complexity for many small and medium-sized manufacturers (SMMs) who heavily rely on people to supervise manufacturing processes and facilities. This research aims to create an affordable, scalable, accessible, and portable (ASAP) solution to automate the supervision of manufacturing processes. The proposed approach seeks to reduce the cost and complexity of smart manufacturing deployment for SMMs through the deployment of consumer-grade electronics and a novel AI development methodology. The proposed system, AI-assisted Machine Supervision (AIMS), provides SMMs with two major subsystems: direct machine monitoring (DMM) and human-machine interaction monitoring (HIM). The AIMS system was evaluated and validated with a case study in 3D printing through the affordable AI accelerator solution of the vision processing unit (VPU).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414792 | PMC |
http://dx.doi.org/10.3390/s22166246 | DOI Listing |
Sci Rep
December 2024
Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
Endometrial cancer is the most prevalent form of gynecologic malignancy, with a significant surge in incidence among youngsters. Although the advent of the immunotherapy era has profoundly improved patient outcomes, not all patients benefit from immunotherapy; some patients experience hyperprogression while on immunotherapy. Hence, there is a pressing need to further delineate the distinct immune response profiles in patients with endometrial cancer to enhance prognosis prediction and facilitate the prediction of immunotherapeutic responses.
View Article and Find Full Text PDFSci Rep
December 2024
College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541000, China.
In today's competitive market environment, accurately identifying potential churn customers and taking effective retention measures are crucial for improving customer retention and ensuring the sustainable development of an organization. However, traditional machine learning algorithms and single deep learning models have limitations in extracting complex nonlinear and time-series features, resulting in unsatisfactory prediction results. To address this problem, this study proposes a hybrid neural network-based customer churn prediction model, CCP-Net.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Industrial Engineering, University of Houston, Houston, TX, USA.
Health event prediction is empowered by the rapid and wide application of electronic health records (EHR). In the Intensive Care Unit (ICU), precisely predicting the health related events in advance is essential for providing treatment and intervention to improve the patients outcomes. EHR is a kind of multi-modal data containing clinical text, time series, structured data, etc.
View Article and Find Full Text PDFJ Imaging
December 2024
Computer Science and Engineering Department, College of Engineering, University of Nevada, Reno, Main Campus, Reno, NV 89557, USA.
Mammography images are the most commonly used tool for breast cancer screening. The presence of pectoral muscle in images for the mediolateral oblique view makes designing a robust automated breast cancer detection system more challenging. Most of the current methods for removing the pectoral muscle are based on traditional machine learning approaches.
View Article and Find Full Text PDFJ Imaging
December 2024
Radiology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
This study investigates radiomic efficacy in post-surgical traumatic spinal cord injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity assessment, and lesion characterization or prognosis and therapy guidance. Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity stratification, and pathology characterization, which are needed to guide prognosis and therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!