Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, H- and C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (q) value of 2.31 mg g for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (q) of 480.77 mg g; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (q) of 45.40 mg g.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412635 | PMC |
http://dx.doi.org/10.3390/polym14163394 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!