Assessment of the Performance of Cationic Cellulose Derivatives as Calcium Carbonate Flocculant for Papermaking.

Polymers (Basel)

University of Coimbra, CIEPQPF, Department of Chemical Engineering, Pólo II, R. Sílvio Lima, 3030-790 Coimbra, Portugal.

Published: August 2022

Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. In this work, distinct cationic celluloses with degrees of substitution of between 0.02 and 1.06 and with distinct morphological properties were synthesized via the cationization of bleached eucalyptus kraft pulp, using a direct cationization with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) or a two-step cationization, where the cellulose was first oxidized to form dialdehyde cellulose and was then made to react with Girard's reagent T (GT). Fibrillated samples were produced by subjecting some samples to a high-pressure homogenization treatment. The obtained samples were evaluated regarding their potential to flocculate and retain precipitated calcium carbonate (PCC), and their performance was compared to that of a commercial CPAM. The cationic fibrillated celluloses, with a degree of substitution of ca. 0.13-0.16, exhibited the highest flocculation performance of all the cationic celluloses and were able to increase the filler retention from 43% (with no retention agent) to ca. 61-62% (with the addition of 20 mg/g of PCC). Although it was not possible to achieve the performance of CPAM (filler retention of 73% with an addition of 1 mg/g of PCC), the results demonstrated the potential of cationic cellulose derivatives for use as bio-based retention agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414915PMC
http://dx.doi.org/10.3390/polym14163309DOI Listing

Publication Analysis

Top Keywords

filler retention
12
performance cationic
8
cationic cellulose
8
cellulose derivatives
8
calcium carbonate
8
retention agents
8
cationic celluloses
8
addition mg/g
8
mg/g pcc
8
cationic
7

Similar Publications

A lubcan cross-linked polyethylene glycol dimethyl ether hydrogel for hyaluronic acid replacement as soft tissue engineering fillers.

Int J Biol Macromol

January 2025

Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China. Electronic address:

The structure of soft tissues is often destroyed by injury and aging. Injectable fillers eliminate the need for surgery and enhance repair. Hyaluronic acid-based hydrogels are commonly employed for their effectiveness and biocompatibility.

View Article and Find Full Text PDF

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based electrolyte is a promising alternative to liquid electrolytes in lithium metal batteries. However, its commercial application is limited by high crystallinity and low Li ion conductivity. In this study, we synthesized a fluorinated Li-based metal-organic framework (Li-MOF-F) and used it as a filler to address these limitations.

View Article and Find Full Text PDF

Regulating Lithium-Ion Transport in PEO-Based Solid-State Electrolytes through Microstructures of Clay Minerals.

ACS Appl Mater Interfaces

January 2025

Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.

Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.

View Article and Find Full Text PDF

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!