The etherification reaction of -phosphoric acid (OPA) with polyoxypropylene glycol in the presence of tertiary amines was studied. The reaction conditions promoting the catalytic activity of triethanolamine (TEOA) and triethylamine (TEA) in the low-temperature etherification of OPA were established. The catalytic activity of TEOA and TEA in the etherification reaction of phosphoric acid is explained by the hydrophobic-hydrophilic interactions of TEA with PPG, leading, as a result of collective interactions, to a specific orientation of polyoxypropylene chains around the tertiary amine. When using triethylamine, complete etherification of OPA occurs, accompanied by the formation of branched OPA ethers terminated by hydroxyl groups and even the formation of polyphosphate structures. When triethanolamine is used as a catalyst, incomplete etherification of OPA with polyoxypropylene glycol occurs and as a result, part of the phosphate anions remain unreacted in the composition of the resulting aminoethers of -phosphoric acid (AEPA). In this case, the hydroxyl groups of triethanolamine are completely involved in the OPA etherification reaction, but the catalytic activity of the tertiary amine weakens due to a decrease in its availability in the branched structure of AEPA. The kinetics of the etherification reaction of OPA by polyoxypropylene glycol catalyzed by TEOA and TEA were studied. It was shown that triethanolamine occupies a central position in the AEPA structure. The physico-mechanical and thermomechanical properties of polyurethane ionomer films obtained on the basis of AEPA synthesized in a wide temperature range were studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414125 | PMC |
http://dx.doi.org/10.3390/polym14163295 | DOI Listing |
Org Lett
December 2024
School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Kent ME4 4TB, U.K.
Traditional etherification methods, although staples in synthetic chemistry, often fall short in the efficient construction of sterically hindered dialkyl ethers, especially under mild and practical conditions. Recent advances have attempted to address these limitations, typically relying on transition metal catalysts, external reductants, or harsh reaction conditions. In this work, we disclose a novel electrochemical approach that enables the synthesis of sterically hindered ethers from economically relevant and readily accessible alcohols without the need for sacrificial oxidants.
View Article and Find Full Text PDFLangmuir
December 2024
College of Material and Chemistry Engineering, Southwest Forestry University, Kunming 650224, China.
Chemistry
November 2024
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China.
Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania.
The implementation of stricter water protection legislation requires the development of novel environmentally friendly water treatment materials. A new method for the preparation of water soluble cationic starch flocculants using potato starch, 3-chloro-2-hydroxypropyltrimethylammonium chloride and CaO additive was developed and surface response methodology was successfully utilized for the optimization of degree of substitution in the cationization of potato starch with and without CaO additive. Based on the results of destabilization studies of model kaolin, wastewater sludge, and microalgae dispersion systems, optimized conditions ware proposed for obtaining an efficient, soluble, and biodegradable cationic starch flocculant with optimal structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium.
Etherification and amination of aryl halide scaffolds are commonly used reactions in parallel medicinal chemistry to rapidly scan structure-activity relationships with abundant building blocks. Electrochemical methods for aryl etherification and amination demonstrate broad functional group tolerance and extended nucleophile scope compared to traditional methods. Nevertheless, there is a need for robust and scale-transferable workflows for electrochemical compound library synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!