At present, the situation of air pollution is still serious, and research on air filtration is still crucial. For the nanofiber air filtration membrane, the diameter, porosity, tensile strength, and hydrophilicity of the nanofiber will affect the filtration performance and stability. In this paper, based on the far-field electrospinning process and the performance effect mechanism of the stacked structure fiber membrane, nanofiber membrane was prepared by selecting the environmental protection, degradable and pollution-free natural polysaccharide biopolymer pullulan, and polyvinylidene fluoride polymer with strong hydrophobicity and high impact strength. By combining two kinds of fiber membranes with different fiber diameter and porosity, a three-layer composite nanofiber membrane with better hydrophobicity, higher tensile strength, smaller fiber diameter, and better filtration performance was prepared. Performance characterization showed that this three-layer composite nanofiber membrane had excellent air permeability and filtration efficiency, and the filtration efficiency of particles above PM 2.5 reached 99.9%. This study also provides important reference values for the preparation of high-efficiency composite nanofiber filtration membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414131PMC
http://dx.doi.org/10.3390/polym14163294DOI Listing

Publication Analysis

Top Keywords

filtration performance
12
air filtration
12
filtration membrane
12
nanofiber membrane
12
composite nanofiber
12
filtration
8
based far-field
8
far-field electrospinning
8
diameter porosity
8
tensile strength
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!