Tartary buckwheat, a polygonaceae family plant, is rich in abundant flavonoids, high-quality protein, and well-balanced essential amino acids. This study aimed to investigate the effects of climatic variables on the quality of Tartary buckwheat. In this study, six distinct types of Tartary buckwheat collected from the Sichuan Basin, Western Sichuan Plateau, and Yunnan-Guizhou Plateau in southwest China were chosen to investigate the impact of climatic conditions from the grain-filling stage to the harvest stage on the concentration of flavonoids and expression of key enzyme genes involved the synthesis of flavonoids. Meteorological data of three producing areas were collected from the China Meteorological Network, mainly including maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature difference (Tdif), and light intensity. Then, the contents of rutin, kaempferol-3-O-rutin glycoside, quercetin, and kaempferol in 30 batches of Tartary buckwheat from 6 varieties including Chuanqiao No. 1, Chuanqiao No. 2, Xiqiao No. 1, Xiqiao No. 2, Miqiao No. 1 and Di ku were determined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Furthermore, the expression levels of phenylalanine ammonia lyase (PAL), 4-coumaric acid coenzyme A ligase (4CL), and anthocyanin synthase (ANS) in six kinds of Tartary buckwheat were detected by real-time polymerase chain reaction (PCR). The seed photos were processed by ImageJ processing software. The partial least squares method was used to analyze the correlation. As a result, light intensity can promote the accumulation of flavonoids and the expression of key enzyme genes. Miqiao No. 1, which grows in Liangshan Prefecture, Sichuan Province, has the highest light intensity and is the dominant variety with flavonoid content. More importantly, the expression levels of PAL and 4CL in the secondary metabolic pathway of flavonoids were positively correlated with the content of Tartary buckwheat flavonoids. Interestingly, the expression level of ANS was negatively correlated with the content of PAL, 4CL, and flavonoids. In addition, ANS is a key gene affecting the seed coat color of Tartary buckwheat. The higher the expression of ANS, the darker the seed coat color. These findings provide a theoretical basis and reference for the breeding of fine buckwheat varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415826 | PMC |
http://dx.doi.org/10.3390/plants11162165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!